Jungang (Gordon) Chen

Summary

Seeking a full-time position in the field of scientific machine learning + numerical simulation + computational engineering, . As a dedicated and quick learner, I blend substantial expertise in numerical simulation, coupled flow and geomechanics, along with proficiency in machine learning. My background is further strengthened by a firm dedication to ethical work practices and a passion for research excellence.

Education

Texas A&M University

College Station, TX

Ph.D. in Petroleum Engineering, 4.0/4.0 GPA

Aug 2019 - Dec 2024

• Specializes in numerical simulation, scientific machine learning, deep learning-based surrogate modeling, and reinforcement learning applications. Showcasing a strong ability to rapidly master state-of-the-art technologies and apply them for large-scale problems.

University of Southern California

Los Angeles, CA

M.S. in Petroleum Engineering, 3.94/4.0 GPA

Aug 2017 - May 2019

China University of Petroleum, Beijing

Beijing, China

B.E. in Petroleum Engineering, 90.3/100 GPA

Aug 2013 - May 2017

Work Experience

Bureau of Economic Geology, UT Austin

Feb 2025 - Present

Postdoctoral Fellow (Python, PyTorch, Supabase)

Austin, TX 78758

- Designed and advanced the CO₂ storage estimation platform **EASiTool**, a Python-based web application integrating backend, frontend, and user management systems; This app was utilized by hundreds of government, industry, and academic users for large-scale CCS project assessments. EASiTool
- Leading the development of a multi-agent reinforcement learning framework to **optimize stakeholder objectives** in complex, real-world CCS projects involving multiple stakeholders.

CNPC USA June 2024 - Aug 2024

Machine Learning Intern (Python, PyTorch, TensorFlow)

Katy, TX 77449

- Collaborated with a cross-functional team to establish strategic roadmap for machine learning applications in drilling operations.
- Utilized industry-standard metrics and physics-based methodologies to identify and label drilling dysfunctions

ConocoPhillips Company

May 2022 - Aug 2022

Machine Learning Intern (AWS Sage Maker, Python, PyTorch, TensorFlow)

Remote

- Developed **GeoGPT** which generate geomodels according to user-defined properties, offering up to a **95% reduction** in geomodel generation time.
- Compressed 2000 geomodels into discrete latent space representations with state-of-art vector-quantized variational auto-encoder 2 (VQ-VAE-2), achieving 416.7 compression ratio while preserving over 90% reconstruction accuracy.
- Developed and applied the **PixelSNAIL** auto-regressive deep learning model for the rapid generation of new geomodels, significantly outpacing conventional techniques, **published** an impactful paper as the **first author**.

Teaching Experience

Bureau of Economic Geology

Jul 2025

Instructor, GeoForce program

Onsite

- GeoFORCE is a free youth education outreach program for high school students across Texas.
- Delivered STEM outreach instruction to 10+ high school students using the EASiTool web app.
- Simplified complex technical concepts for diverse learners with no prior background.

Texas A&M University

Aug 2022 - May 2023

Teaching Assistant, PETE 419-Petroleum Data Analytics & Machine Learning

On site

- Collaborated with professor in delivering lectures, preparing and conducting examinations, and managing various academic projects.
- Guided and supported over **30 students** during office hours, providing **personalized tutoring** and **assistance** with coursework, enhancing their understanding and performance in the subject matter.

Ph.D. Dissertation Supervised by John Killough & Eduardo Gildin

Sep 2019 - Dec 2024

Flow-Geomechanics Coupling, Reduced-order Modeling and Optimization Techniques

- Developed in-house **coupled flow and geomechanics simulator** for fractured reservoirs utilizing EDFM-XFEM and complex fracture distributions can be modeled, improved **computational efficiency by 10x**, **presented** at international meetings as the **first author**.
- Engaged in the development of deep learning-based approaches for **reduced-order modeling**, **optimization** of subsurface problems, including oil&gas resources extraction and CO2 storage problems. Authored a few preprints and journal papers, serving as the **first author** for those publications. Achievements include **reducing computational time** by over **1000 times**, leading to substantial cost **savings in millions of dollars** for a CO2 storage project.

Subsurface Energy and Environmental Systems Lab at USC

May 2018 - May 2019

 $Graduate\ student$

- Formulated and applied a projection-based ESMDA for **assimilating** CO2-injected induced micro-seismic data, justifying its applicability to discrete data.
- Simulated Geo-mechanical Responses of CO2 Storage at Sleipner Field Using CMG GEM.
- Employed sequential Gaussian simulation via SGeMS to **quantify reservoir uncertainties**, leading to a more precise understanding of reservoir behavior and risk assessment, significantly improving decision-making processes in reservoir management.

Recent Projects

Funded Project by Woodside Energy (not included in Ph.D. Dissertation)

Aug 2023 - May 2024

Data-Driven Reservoir Characterization Using ML-assisted Pressure Transient Analysis

- Generated 2000 simulation runs using CMG IMEX under different reservoir properties, achieved speed up of over 4 folds while retain the accuracy of over 95%.
- Developed subroutines to seamlessly extract transients from well pressure and rates data.
- Designed and deployed machine learning models for predicting reservoir properties using well data from Gulf of Mexico, achieving high accuracy with testing MAE of 28.2 mD for permeability.

Deep Learning Course Projects

Jan 2022 - May 2022

Graduate student (NLP, LLM, Time-series ML)

- Led an advanced **artificial language translation** project, implementing a cutting-edge transformer model; fine-tuned hyperparameters and leveraged state-of-the-art **NLP** techniques, resulting in a remarkable **35% improvement in translation accuracy** over baseline models and securing the highest evaluation scores in a competitive academic setting.
- Developed and led a text prediction project, employing RNN, Bi-LSTM, and Transformer models; through rigorous experimentation and optimization, achieved a 20% boost in predictive accuracy and a 30% reduction in processing time, compared to existing benchmarks.

PUBLICATIONS

For a detailed list of publications, please refer to Google Scholar

- Chen, J., Wu, K., Killough, J. (2022, September). "Coupled Flow and Geomechanics in Reservoirs with Complex Fractures Using Embedded Meshes." In SPE Annual Technical Conference and Exhibition. OnePetro. <u>Link</u>
- Chen, J., Huang, CK., Delgado, J.F. et al. (2023). "Generating subsurface earth models using discrete representation learning and deep autoregressive network." Computational Geosciences 27(6): 955-974. <u>Link</u>
- Chen, J., Gildin, E., Killough, J. E. (2023). Physics-informed Convolutional Recurrent Surrogate Model for Reservoir Simulation with Well Controls. arXiv preprint arXiv:2305.09056. <u>Link</u>
- Chen, J., Gildin, E., Killough, J. E. (2023). "Transfer learning-based physics-informed convolutional neural network for simulating flow in porous media with time-varying controls." Mathematics **2024**, 12, 3281. https://doi.org/10.3390/math12203281 <u>Link</u>
- Chen, J., Gildin, E., Kompantsev, G. (2024). Optimization of pressure management strategies for geological CO2 storage using surrogate model-based reinforcement learning. International Journal of Greenhouse Gas Control, 138, 104262. Link
- Chen, J., Gidlin, E., Killough, J. (2024, September). Advancing Proxy Modeling in Reservoir Simulation: A Multi-Step Embed to Control Approach. In SPE Annual Technical Conference and Exhibition? (p. D021S023R006). SPE. <u>Link</u>

- Misra, S., Chen, J., Falola, Y., Churilova, P., Huang, C. K., & Delgado, J. (2023, June). "Massive Geomodel Compression and Rapid Geomodel Generation Using Advanced Autoencoders and Autoregressive Neural Networks." In SPE EuropeC- Europe Energy Conference featured at the 84th EAGE Annual Conference & Exhibition.OnePetro. Link
- Misra, S., Chen, J., Churilova, P., & Falola, Y. (2024, February). Generative Artificial Intelligence for Geomodeling. In International Petroleum Technology Conference (p. D031S128R001). IPTC. <u>Link</u>

Technical Skills

Programming Languages: Python (5 years+), MATLAB(5 years+), C++ (3 years+), FORTRAN (3 years+) Software & Tools: CMG, ECLIPSE, Petrel, ABAQUS, COMSOL, AWS, AZURE, Google Cloud ML Platform & Tools: TensorFlow (3 years+), PyTorch (3 years+), GitHub, LaTex Languages: Chinese(native), English (fluent)

Honors and Other Roles

- Invited Reviewer, Geoenergy Science and Engineering (IF=3.6), Neural Computing and Applications (IF=6.0), Computer Methods in Applied Mechanics and Engineering (IF=7.2), Mathematical Geosciences, Advances in Water Resources
- Member, Society of Petroleum Engineers.
- Graduate Research Assistantship, 2019-2021, Texas A&M University.
- Graduate Fellowship, 2022-2023, Texas A&M University.
- Killough Family Fellowship in Reservoir Simulation, 2022-2023.
- Chevron-USC Engineering Week Showcase, 1st Place, Feb. 2018.